1.

The smallest positive value of x (in degrees) for which`tan(x+100^@)=tan(x+50^@).tanx.tan(x-50^@)` is

Answer» Correct Answer - `x = 30^(@)`
`tan(x+100^(@))=tan(x+50^(@))tanxtan(x-50^(@))`
`implies(tan(x+100^(@)))/(tanx)=tan(x+50^(@))tanxtan(x-50^(@)).`
`implies(sin(x+100^(@)))/(cos(x+100^(@))).(cosx)/(sinx)=(sin(x+50^(@))sin(x-50^(@)))/(cos(x+50^(@))cos(x-50^(@)))`
`implies(sin(2x+100^(@))+sin100^(@))/(sin(2x+100^(@))-sin100^(@))=(cos100^(@)-cos2x)/(cos100^(@)+cos2x)`
`implies[sin(2x+100^(@))+sin100^(@)][cos100^(@)+cos2x]`
`=[cos100^(@)-cos2x]xx[sin(2x+100^(@))-sin100^(@)]`
`impliessin(2x+100^(@)).cos100^(@)+sin(2x+100^(@)).cos2x+sin100^(@)cos100^(@)+sin100^(@)cos2x`
`=cos100^(@)sin(2x+100^(@))-cos100^(@)sin100^(@)-cos2xsin(2x+100^(@))+cos2xsin100^(@)`
`implies2sin(2x+100^(@))cos2x+2sin100^(@)cos100^(@)=0`
`impliessin(4x+100^(@))+sin100^(@)+sin200^(@)=0`
`=sin(4x+100^(@))+2sin150^(@)cos50^(@)=0`
`=sin(4x+100^(@))+2.(1)/(2)sin(90^(@)-50^(@))=0`
`impliessin(4x+100^(@))+sin40^(@)=0`
`impliessin(4x+100^(@))=sin(-40^(@))`
`implies4x+100^(@)=npi+(-1)^(n)(-40^(@))`
`implies4x=n(180^(@))+(-1)^(n)(-40^(@))-100^(@)`
`impliesx=(1)/(4)[n(180^(@))+(-1)^(n)(-40^(@))-100^(@)]`
The smallest positive value of x is obtained when n=1.
Therefore, `x=(1)/(4)(180^(@)+40^(@)-100^(@))`
`impliesx=(1)/(4)(120^(@))=30^(@)`


Discussion

No Comment Found