1.

If \( 10 cm \) is the amplitude of oscillation performed by a particle in SHM, then what fraction of total oscillation energy is kinetic when the particle is at \( 5 cm \) from the mean position?

Answer»

Etotal \(= \frac{1}{2} m \omega^2 A^2\)

Etotal \(= \frac{1}{2} \times m \omega^2 (A^2)\)

Etotal \(= \frac{1}{2} \times m \omega^2 \times (10^2)\)

Etotal \(= \frac{1}{2} \times m \omega^2 \times 100 ....(1)\)

 K.E. \(= \frac{1}{2} m \omega^2 (A^2 - x^2)\)

K.E. \(= \frac{1}{2} m \omega^2 [(10)^2 - (5)^2]\)

K.E. \(= \frac{1}{2} m \omega^2 [100 - 25]\)

K.E. \(= \frac{1}{2} m \omega^2 \times 75 ....(2)\)

Fraction of total energy and K.E. energy \(\frac{(1)}{(2)}\)

\(\frac{E_{total}}{K.E.} = \cfrac{\frac{1}{2}m\omega^2 \times 100}{\frac{1}{2} m \omega^2 \times 75}\)

\(\frac{E_{total}}{K.E.} = \frac{100}{75} = \frac{4}{3}\)

\(\frac{E_{total}}{K.E.} = \frac{4}{3}.\)



Discussion

No Comment Found

Related InterviewSolutions