1.

If `(2+sinx)(dy)/(dx)+(y+1)cosx=0`and `y(0)=1,t h e ny(pi/2)`is equal to`-1/3`(2) `4/3`(3) `1/3`(4) `-2/3`A. (a) 1/3B. (b) -2/3C. (c) -1/3D. (d) 4/3

Answer» Correct Answer - (a)
We have, `(2+sinx)dy/dx+(y+1)cos x =0`
`rArr dy/dx+(cosx)/(2+sinx)y=(-cosx)/(2+sinx)`
which is a linear differential equation.
`therefore IF=e^(int(cosx)/(2+sinx)dx)=e^(log(2+sinx))=2 +sin x`
`therefore` Required solution is given by
`y cdot (2+sinx)=int(-cosx)/(2+sin x)cdot (2+sinx)dx+C`
`rArr y(2+sinx) =-sinx+C`
Also, `y(0)=1`
`therefore 1(2+sin0)=-sin0+C`
`rArr C =2`
`therefore y=(2-sinx)/(2+sinx) rArr y(pi/2)=(2-sin frac{pi}{2})/(2+sin frac {pi}{2})=1/3`


Discussion

No Comment Found

Related InterviewSolutions