InterviewSolution
Saved Bookmarks
| 1. |
If `(2+sinx)(dy)/(dx)+(y+1)cosx=0`and `y(0)=1,t h e ny(pi/2)`is equal to`-1/3`(2) `4/3`(3) `1/3`(4) `-2/3`A. (a) 1/3B. (b) -2/3C. (c) -1/3D. (d) 4/3 |
|
Answer» Correct Answer - (a) We have, `(2+sinx)dy/dx+(y+1)cos x =0` `rArr dy/dx+(cosx)/(2+sinx)y=(-cosx)/(2+sinx)` which is a linear differential equation. `therefore IF=e^(int(cosx)/(2+sinx)dx)=e^(log(2+sinx))=2 +sin x` `therefore` Required solution is given by `y cdot (2+sinx)=int(-cosx)/(2+sin x)cdot (2+sinx)dx+C` `rArr y(2+sinx) =-sinx+C` Also, `y(0)=1` `therefore 1(2+sin0)=-sin0+C` `rArr C =2` `therefore y=(2-sinx)/(2+sinx) rArr y(pi/2)=(2-sin frac{pi}{2})/(2+sin frac {pi}{2})=1/3` |
|