InterviewSolution
| 1. |
If 2cos2θ – 5cosθ + 2 = 0 where, 0° < θ < 90°. Find the value of \(\sqrt {\frac{{1{\rm{\;}} + {\rm{\;ta}}{{\rm{n}}^2}{\rm{\theta }}}}{{1{\rm{\;}} - {\rm{\;co}}{{\rm{t}}^2}{\rm{\theta }}}}} \)?1. √3/22. √63. √2/34. 1 |
|
Answer» Correct Answer - Option 2 : √6 Given: 2cos2θ – 5cosθ + 2 = 0 Concept used: Using the concept of trigonometric ratios with respect to standard angles. Calculation: 2cos2θ – 5cosθ + 2 = 0 ⇒ 2cos2θ – 4cosθ – cosθ + 2 = 0 ⇒ 2cosθ(cosθ – 2) – 1(cosθ – 2) = 0 ⇒ (cosθ – 2)(2cosθ – 1) = 0 ⇒ (cosθ – 2) = 0 or (2cosθ – 1) = 0 ⇒ cosθ = 2 or cosθ = 1/2 cosθ ≠ 2, because maximum value of cosθ is 1. So, cosθ = 1/2 ⇒ cosθ = cos60° [0° < θ < 90°] ⇒ θ = 60° \(\sqrt {\frac{{1{\rm{\;}} + {\rm{\;ta}}{{\rm{n}}^2}{\rm{θ }}}}{{1{\rm{\;}} - {\rm{\;co}}{{\rm{t}}^2}{\rm{θ }}}}} \) \( \Rightarrow \sqrt {\frac{{1{\rm{\;}} + {\rm{\;ta}}{{\rm{n}}^2}60^\circ }}{{1{\rm{\;}} - {\rm{\;co}}{{\rm{t}}^2}60^\circ }}} \) \( \Rightarrow \sqrt {\frac{{1{\rm{\;}} + {\rm{\;}}{{\left( {\sqrt 3 } \right)}^2}}}{{1{\rm{\;}} - {\rm{\;}}{{\left( {\frac{1}{{\sqrt 3 }}} \right)}^2}}}} \) \( \Rightarrow \sqrt {\frac{{1{\rm{\;}} + {\rm{\;}}3}}{{1{\rm{\;}} - {\rm{\;}}\frac{1}{3}}}} \) \( \Rightarrow \sqrt {\frac{4}{{{\rm{\;}}\frac{2}{3}}}} \) ⇒ √6 ∴ The value is √6. |
|