1.

If 2x = 4y = 8z and xyz = 288, then \(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{8z}\) equals(a) \(\frac{11}{8}\) (b) \(\frac{11}{24}\)(c) \(\frac{11}{48}\)(d) \(\frac{11}{96}\)

Answer»

(d) \(\frac{11}{96}\)

2x = (22)y = (23)z ⇒ x = 2y = 3z

Given xyz = 288 ⇒ \(x\times\frac{x}{2}\times\frac{x}{3} = 288\)

⇒ x3 = 6 × 288 ⇒ x3 = 1728

⇒ x = \(\sqrt[3]{1728}=12\)

∴ y = \(\frac{12}{2}\) = 6 and  = \(\frac{12}{3}\) = 4

∴ \(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{8z}\) = \(\frac{1}{24}+\frac{1}{24}+\frac{1}{32}\)

\(\frac{4+4+3}{96} = \frac{11}{96}.\)



Discussion

No Comment Found