1.

If `3f(x)-f((1)/(x))= log_(e) x^(4)` for `x gt 0` ,then `f(e^(x))=`A. xB. `log_(e)x `C. `e^(x)`D. none of these

Answer» Correct Answer - A
We have ,
`3f(x)-f((1)/(x))=log_(e) x^(4)`
`implies 3f(x)-f((1)/(x))=4 log_(e)x " " ` ….(i)
`implies 3f((1)/(x))-f(x)=4 log_(e)((1)/(x))" "`[Replacing x by 1/x]
`implies 3f((1)/(x))-f(x)=-4 log_(e)x" "`…..(ii)
Solving (i) and (ii) , we get
`8f(x)=8log_(e)x implies f(x)=log_(e)ximplies f(e^(x))=x`


Discussion

No Comment Found

Related InterviewSolutions