1.

If `(3k+4l+6m+7n)/(3k+4l-6m-7n) = (3k-4l+6m-7n)/(3k-4l-6m+7n)`,then show that k, 2m, 4l and 7n are in proportion.

Answer» `(3k+4l+6m+7n)/(3k+4l-6m-7n) = (3k-4l+6m-7n)/(3k-4l-6m+7n)`
`rArr((3k+4l)+(6m+7n))/((3k+4l)-(6m+7n)) = ((3k-4l)+(6m-7n))/((3k-4l)-(6m+7n))`
`rArr (3k+4l)/(6m+7n) = (3k-4l)/(6m-7n) rArr(3k+4l)/(3k-4l) = (6m+7n)/(6m-7n)`
` rArr (3k)/(4l) = (6m)/(7n) rArr k/(4l)=(2m)/(7n)`
` rArr k/(2m) = (4l)/(7n)`
`:. ` k, 2m, 4l and 7n are in proprotion.


Discussion

No Comment Found