InterviewSolution
Saved Bookmarks
| 1. |
If a, b, c and d are in proportion, then show that `(a^(3)+3ab^(2))/(3a^(2)b+b^(3))=(c^(3)+3cd^(2))/(3c^(2)d+d^(3))` |
|
Answer» Given a, b, c and d are in proportion ` rArr a/b = c/d ` Applying componendo and dividendo, ` (a+b)/(a-b)= (c+d)/(c-d)` Cubing on both sides, we have `((a+b)^(3))/((a-b)^(3)) = [(c+d)/(c-d)]^(3)` ` rArr (a^(3)+3a^(2)b+3ab^(2)+b^(3))/(a^(3)-3a^(3)b+3ab^(2)-b^(3))=(c^(3)+3c^(2)d+3cd^(2)+l^(3))/(c^(3)-3c^(2)d+3cd^(2)-d^(3))` `((a^(3)+3ab^(2))+(3a^(2)b+b^(3)))/((a^(3)+3ab^(2))-(3a^(2)b+b^(3)))=((c^(3)+3cd^(2))+(3c^(2)d+d^(3)))/((c^(3)+3cd^(2))-(3c^(2)d+d^(3)))` ` rArr (a^(3)+3ab^(2))/(3a^(2)b+b^(3))=(c^(3)+3cd^(2))/(3c^(2)d+d^(3))` Hence, proved. |
|