1.

If (-4, 0) and (4,0) are two vertices of an equilateral triangle, find the coordinates of its third vertex.

Answer» Let `A(x,y)` is the coordinate of the third point.
We are given `B(-4,0)` and `C(4,0)`.
Here, `BC = sqrt(4-(-4)^2+(0-0)^2) = 8`
`AB = sqrt((x-(-4))^2+(y-0)^2) = sqrt((x+4)^2+y^2)`
`AB = sqrt((x-4))^2+(y-0)^2) = sqrt((x-4)^2+y^2)`
As given triangle is an equilateral triangle.
`:. AB = AC = BC`
` sqrt((x+4)^2+y^2) = sqrt((x-4)^2+y^2) `
`=>(x+4)^2+y^2 = (x-4)^2+y^2 `
`=>(x+4)^2 = (x-4)^2`
`=>x^2+16+8x = x^2+16-8x`
`=>16x = 0`
`=>x = 0`
Now, `AB = BC`
`:. sqrt((x+4)^2+y^2) = 8`
`=> (x+4)^2+y^2 = 64`
`=>(0+4)^2+y^2 = 64`
`=>y^2 = 64-16`
`=> y = sqrt48 = 4sqrt3`
So, coordinates of third vertex will be `A(0,4sqrt3)`.


Discussion

No Comment Found