1.

If 4sin–1 x + cos–1 x = π, then what is the value of x?

Answer»

Given 4 sin-1 x + cos-1 x = π 

We know that sin-1 x + cos-1 x = π/2

\(\Rightarrow 4sin^{-1}x+\frac{\pi}{2}-sin^{-1}x=\pi\)

\(\Rightarrow 3sin^{-1}x=\pi-\frac{\pi}{2}\)

\(\Rightarrow 3sin^{-1}x=\frac{\pi}{2}\)

\(\Rightarrow sin^{-1}x=\frac{\pi}{6}\)

\(\Rightarrow sin^{-1}x=sin^{-1}\frac{1}{2}\)

∴ x = 1/2



Discussion

No Comment Found