1.

If \(5^{56}\big(\frac{1}{5}\big)^x\big(\frac{1}{5}\big)^{\sqrt{x}}\) > 1, then x satisfies :(a) [0, 49) (b) (49, 64] (c) [0, 64) (d) [49, 64)

Answer»

(a)  [0, 49)

\(5^{56}\big(\frac{1}{5}\big)^x\big(\frac{1}{5}\big)^{\sqrt{x}}\) > 1

\(5^{56}\times5^{-x}\times5^{-\sqrt{x}}\) < 1 ⇒ \(5^{56-x-\sqrt{x}}\) > 50 

⇒ 56 - x - √x > 0 ⇒ x + √x - 56 < 0

⇒ y2 + y – 56 < 0, where y = √x 

⇒ (y + 8) (y – 7) < 0 ⇒ –8 < y < 7 ⇒ –8 < √x < 7 

⇒ 0 ≤ √x < 7 as √x cannot be negative 

⇒ 0 ≤ \(x\) < 49 ⇒ x ∈ [0, 49)



Discussion

No Comment Found