1.

If `A=[[1, 1, 1],[ 1, 1, 1],[ 1, 1, 1]]`, then prove that `A^n=[[3^(n-1),3^(n-1),3^(n-1)],[3^(n-1),3^(n-1),3^(n-1)],[3^(n-1),3^(n-1),3^(n-1)]]`for every positive integer `n`.

Answer» We shall prove the result by using the principle of mathematical induction.
When n=1, we have
`A^(1)=[{:(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)):}]=[{:(3^(0),3^(0),3^(0)),(3^(0),3^(0),3^(0)),(3^(0),3^(0),3^(0)):}]=[{:(1,1,1),(1,1,1),(1,1,1):}].`
Thus, the result is true for `n=1`.
Let it be true for n=k. Then, `A^(k)=[{:(3^(k-1),3^(k-1),3^(k-1)),(3^(k-1),3^(k-1),3^(k-1)),(3^(k-1),3^(k-1),3^(k-1)):}].`
`:." "A^(k-1)=A.A^(k)`
`=[{:(1,1,1),(1,1,1),(1,1,1):}][{:(3^(k-1),3^(k-1),3^(k-1)),(3^(k-1),3^(k-1),3^(k-1)),(3^(k-1),3^(k-1),3^(k-1)):}]`
`=[{:(3(3^(k-1)),3(3^(k-1)),3(3^(k-1))),(3(3^(k-1)),3(3^(k-1)),3(3^(k-1))),(3(3^(k-1)),3(3^(k-1)),3(3^(k-1))):}]=[{:(3^(k),3^(k),3^(k)),(3^(k),3^(k),3^(k)),(3^(k),3^(k),3^(k)):}].`
Thus, the result is true for `n=(k+1)`, whenever it is true for `n=k.`
So, the result is true for all `n in N.`
Hence, `A^(n)=[{:(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)):}]`, for all values of `n inN.`


Discussion

No Comment Found

Related InterviewSolutions