1.

If A = {1, 2, 3, 4} define relations on A which have properties of being(i) Reflexive, transitive but not symmetric(ii) Symmetric but neither reflexive nor transitive.(iii) Reflexive, symmetric and transitive.

Answer»

(i) The relation on A having properties of being reflexive, transitive, but not symmetric is

R = {(1, 1), (2, 2), (3, 3), (4, 4), (2, 1)}

Relation R satisfies reflexivity and transitivity.

⇒ (1, 1), (2, 2), (3, 3) ∈ R 

And (1, 1), (2, 1) ∈ R ⇒ (1, 1) ∈ R

However, (2, 1) ∈ R, but (1, 2) ∉ R

(ii)  The relation on A having properties of being reflexive, transitive, but not symmetric is

R = {(1, 1), (2, 2), (3, 3), (4, 4), (2, 1)}

Relation R satisfies reflexivity and transitivity.

⇒ (1, 1), (2, 2), (3, 3) ∈ R 

And (1, 1), (2, 1) ∈ R ⇒ (1, 1) ∈ R

However, (2, 1) ∈ R, but (1, 2) ∉ R

(iii) The relation on A having properties of being symmetric, reflexive and transitive is

R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1)}

So, the R is an equivalence relation on A.



Discussion

No Comment Found