1.

If `a_1, a_2, ,a_n >0,`then prove that`(a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)++(a_(n-1))/(a_n)+(a_n)/(a_1)> n`

Answer» Since `A.M gt G.M`., we have
`(1)/(n) ((a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_n-1)/(a_n)+(a_n)/(a_1))((a_1)/(a_2)(a_2)/(a_3)(a_3)/(a_4)....(a_(n-1)a_n)/(a_na_1))^(1//n)`
or `((a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....(a_(n-1))/(a_n)+(a_n)/(a_1)) gt n(1)^n`
or `((a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+....+(a_(n-1))/(a_n))gt n`


Discussion

No Comment Found