

InterviewSolution
Saved Bookmarks
1. |
If `A^(2) - 3 A + 2I = 0,` then A is equal toA. `I`B. `2I`C. `[[3,-2],[1,0]]`D. `[[3,1],[-2,0]]` |
Answer» Correct Answer - A::B::C::D `because A^(2) - 3 A + 2I = 0` …(i) `rArr A^(2) - 2 AI + 2I^(2) = 0 ` `rArr (A-I) (A -2I) = 0` `therefore A = I or A = 2I` Characteristic Eq. (i) is `lambda^(2) - 3lambda + 2 = 0 rArr lambda = 1,2` It is clear that alternate (c) and (d) have the characteristic equation `lambda^(2) - 3lambda + 2 = 0 `. |
|