InterviewSolution
Saved Bookmarks
| 1. |
If `a^(2)/(b + c) = b^(2)/(c +a) = c^(2)/(a + b) = 1`, then show that ` 1/(1+a) + 1/(1 + b) + 1/(1+c) = 1`. |
|
Answer» `a^(2)/(b+c) = 1 or, " a/(b+c) = 1/a` [by componendo process] ` :. 1/(1 + a) = a/(a + b + c) ` ……………..(1) Similarly , ` 1/(1+b) = b/(a + b + c) ` ………….(2) and , ` 1/(1 +c) = c/(a + b + c) ` ……………(3) Now, adding (1), (2) and (3) we get, `1/(1+a) + 1/(1+b) + 1/(1+c) = a/(a+b+c) + b/(a+b+c) + c/(a + b+c)` ` = (a + b + c)/(a + b + c) = 1`. ` :. 1/(1 + a) + 1/(1 + b) + 1/(1 + c) = 1`. |
|