InterviewSolution
Saved Bookmarks
| 1. |
If ` x = (8ab)/(a+b) `, then find the value of `((x+4a)/(x - 4a) + (x+4b)/(x-4b))`. |
|
Answer» Given that ` x = (8ab)/(a + b) " or, " x/(4a) = (2b)/(a +b)` or, `(x+4a)/(x - 4a) = (2b + a + b)/(2b - a - b) = (a + 3b)/(b - a) ` ......................(1) Again, ` x = (8ab)/(a + b) " or, " x/(4b) = (2a)/(a + b)` or, ` (x + 4b)/(x - 4b) = (2a + a +b)/(2a - a - b) = (3a +b)/(a-b) ` ..................(2) ` :. ` adding (1) and (2) we get, `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b) = (a+3b)/(b-a) + (3a +b)/(a-b)` ` = (-a - 3b + 3a + b)/(a -b) = (2a - 2b)/(a -b) = (2 (a -b))/((a - b)) = 2`. ` :. (x + 4a)/(x - 4a) + (x + 4b)/(x - 4b) = 2`. |
|