1.

If ` x = (8ab)/(a+b) `, then find the value of `((x+4a)/(x - 4a) + (x+4b)/(x-4b))`.

Answer» Given that ` x = (8ab)/(a + b) " or, " x/(4a) = (2b)/(a +b)`
or, `(x+4a)/(x - 4a) = (2b + a + b)/(2b - a - b) = (a + 3b)/(b - a) ` ......................(1)
Again, ` x = (8ab)/(a + b) " or, " x/(4b) = (2a)/(a + b)`
or, ` (x + 4b)/(x - 4b) = (2a + a +b)/(2a - a - b) = (3a +b)/(a-b) ` ..................(2)
` :. ` adding (1) and (2) we get,
`(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b) = (a+3b)/(b-a) + (3a +b)/(a-b)`
` = (-a - 3b + 3a + b)/(a -b) = (2a - 2b)/(a -b) = (2 (a -b))/((a - b)) = 2`.
` :. (x + 4a)/(x - 4a) + (x + 4b)/(x - 4b) = 2`.


Discussion

No Comment Found

Related InterviewSolutions