InterviewSolution
Saved Bookmarks
| 1. |
If `a+2b+3c=1` and ` a>0 , b>0 , c>0` and the greatest value of `a^3b^2c` is `1/k` then `(k-5180)` is |
|
Answer» Here, `a+2b+3c = 1` We can write it as, `a/3+a/3+a/3+b+b+3c = 1` Now, we know aritmatic mean of `n` numbers is always greater than geometric mean of those `n` numbers. `:. (a/3+a/3+a/3+b+b+3c)/6 ge (a/3*a/3*a/3*b*b*3c)^(1/6)` `=>(a+2b+3c)/6 ge ((a^3b^2c)/9)^(1/6)` `=>1/6 ge ((a^3b^2c)/9)^(1/6)` `=>(1/6)^6(9) ge (a^3b^2c)` `=> a^3b^2c le 9/(216**216)` `=> a^3b^2c le 1/5184` Now, greatest value of ` a^3b^2c` is `1/k`, `:. 1/k = 1/5184` `=> k = 5184` `:. k - 5180 = 5184-5180` `=> k - 5180 = 4.` |
|