1.

If A = 4x2 + y2 – 6xy; B = 3y2 + 12x2 + 8xy; C = 6x2 + 8y2 + 6xy then, find (i) A + B + C (ii) (A – B) – C

Answer»

Given A = 4x2 + y2 – 6xy; 

B = 3y2 + 12x2 + 8xy; 

C = 6x2 + 8y2 + 6x

Write the given expressions in standard form. 

A = 4x2 – 6xy + y2 

B = 12x2 + 8xy + 3y2 

C = 6x2 + 6xy + 8y2 

(i) A + B + C = (4x2 – 6xy + y2) + (12x2 + 8xy + 3y2) + (6x2 + 6xy + 8y2

= 4x2 – 6xy + y2 + 12x2 + 8xy + 3y2 + 6x2 + 6xy + 8y2 

= (4x2 + 12x2 + 6x2 ) + (- 6xy + 8xy + 6xy) + (y2 + 3y2 + 8y2

= (4 + 12 + 6) x2 + (- 6 + 8 + 6) xy + (1 + 3 + 8)y2 

∴ A + B + C = 22x2 + 8xy + 12y2

(ii) (A – B) – C 

A + (- B) + (- C) 

Additive inverse of B is 

– B = – (12x2 + 8xy + 3y2

∴ – B = – 12x2 – 8xy – 3y2 

Additive inverse of C is 

– C = -(6x2 + 6xy + 8y2

∴ – C = – 6x2 – 6xy – 8y2 

A + (- B) + (- C) 

= (4x2 – 6xy + y2 ) + (- 12x2 – 8xy – 3y2 ) + (- 6x2 – 6xy – 8y2

= 4x2 – 6xy + y2 – 12x2 – 8xy – 3y2 – 6x2 – 6xy – 8y2 

= (42x – 12x2 – 6x2 ) + (- 6xy – 8xy – 6xy) + (y2 – 3y2 – 8y2 )

∴ (A – B) – C = – 14x2 – 20xy – 10y2



Discussion

No Comment Found