InterviewSolution
Saved Bookmarks
| 1. |
If a an arbitrary constant, then solution of the differential equation `(dy)/(dx)+sqrt((1-y^(2))/(1-x^(2)))=0` isA. `xsqrt(1-y^(2))+ysqrt(1-x^(2))=a`B. `ysqrt(1-y^(2))+xsqrt(1-x^(2))=a`C. `xsqrt(1-y^(2))-ysqrt(1-x^(2))=a`D. `ysqrt(1-y^(2))-xsqrt(1-x^(2))=a` |
|
Answer» Correct Answer - A We have, `(dy)/(dx)+sqrt((1-y^(2))/(1-x^(2)))=0` `rArr" "sqrt(1-x^(2))dy+sqrt(1-y^(2))dx=0` `rArr" "(1)/(sqrt(1-x)^(2))dx+(1)/(sqrt(1-y^(2)))dy=0` `rArr" "sin^(-1)x+sin^(-1)y=sin^(-1)a" [On integrating]"` `rArr" "sin^(-1)(xsqrt(1-y^(2))+ysqrt(1-x^(2)))=sin^(-1)a` `rArr" "xsqrt(1-y^(2))+ysqrt(1-x^(2))-a` |
|