

InterviewSolution
Saved Bookmarks
1. |
If A and B are any two different square matrices of order n with `A^3=B^3` and `A(AB)=B(BA)` thenA. `A^2+B^2=O`B. `A^2+B^2=I`C. `A^3+B^3=I`D. none of these |
Answer» Correct Answer - D We have, `(A^2+B^2)(A-B)=A^3-A^2B+B^2A-B^3` `=A^3-A(AB)+B(BA)-B^3=O` It is given that `A-BneO " but " (A^2+B^2)(A-B)=O` may not imply that `A^2+B^2=O`. Because, the product of two non-null matrices can be a null matrix. |
|