1.

If a and b are arbitrary constants then the differential equation having (x^(2))/(a^(2))+(y^(2))/(b^(2)) =1 as its gengeral solution is

Answer»

`((d^(2)y)/(DX^(2)))^(2)=[1+((dy)/(dx))^(2)]^(3)`
`(x^(2)-y^(2))(d^(2)y)/(dx^(2))-2xy(dy)/(dx)-y=0`
`xy(d^(2)y)/(dx^(2))+x((dy)/(dx))^(2)-y(dy)/(dx)=0`
`x^(2)(d^(2)x)/(dx^(2))+2X(dy)/(dx)-2y=0`

ANSWER :C


Discussion

No Comment Found

Related InterviewSolutions