1.

If A and B are square matrices of the same order, explain, why in general (i) (A + B)2 ≠ A2 + 2AB + B2 (ii) (A – B)2 ≠ A2 – 2AB + B2 (iii) (A + B)(A – B) = A2 – B2

Answer»

(i) Given that A and B are square matrices of the same order.

We know,

(A + B)2 = (A + B)(A + B) 

⇒ (A + B)2 = A(A + B) + B(A + B) 

∴ (A + B)2 = A2 + AB + BA + B

For the equation, 

(A + B)2 = A2 + 2AB + B2 to be valid, we need

 AB = BA. 

As the multiplication of two matrices does not satisfy the commutative property in general, 

AB ≠ BA. 

Thus, 

(A + B)2 ≠ A2 + 2AB + B2.

(ii) Given that A and B are square matrices of the same order.

We know, 

(A – B)2 = (A – B)(A – B) 

⇒ (A – B)2 = A(A – B) – B(A – B) 

∴ (A – B)2 = A2 – AB – BA + B2 

For the equation, 

(A – B)2 = A2 – 2AB + B2 to be valid, we need 

AB = BA.

As the multiplication of two matrices does not satisfy the commutative property in general, 

AB ≠ BA. 

Thus, 

(A – B)2 ≠ A2 – 2AB + B2.

(iii) Given that A and B are square matrices of the same order.

We have,

(A + B)(A – B) = A(A – B) + B(A – B)

∴ (A + B)(A – B) = A2 – AB + BA – B2

For the equation, 

(A + B)(A – B) = A2 – B2 to be valid, we need 

AB = BA.

As the multiplication of two matrices does not satisfy the commutative property in general, 

AB ≠ BA.

Thus, 

(A + B)(A – B) ≠ A2 – B2.



Discussion

No Comment Found

Related InterviewSolutions