

InterviewSolution
Saved Bookmarks
1. |
If α and β are the roots of a quadratic a P equation x2 – px + q = 0, then α/ β + β/α = A) (p2 - 2q)/qB) (p2 + 2q)/qC) (p2 - q)/qD) (p2 + q)/q |
Answer» Correct option is (A) (p2 - 2q)/q Given that \(\alpha\) and \(\beta\) are roots of \(x^2-px+q=0\) Then sum of roots \(=\frac{-b}a=\frac{-(-p)}1=p\) \(\therefore\) \(\alpha+\beta=p\) _____________(1) And product of roots \(=\frac{c}a=\frac q1=q\) \(\therefore\) \(\alpha\beta=q\) _____________(2) Now, \(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\) \(=\frac{\alpha^2+\beta^2}{\alpha\beta}\) \(=\frac{\alpha^2+\beta^2+2\alpha\beta-2\alpha\beta}{\alpha\beta}\) \(=\frac{(\alpha+\beta)^2-2\alpha\beta}{\alpha\beta}\) = \(\frac{p^2-2q}{q}\) Correct option is D) (p2 + q)/q |
|