1.

If α and β are the solution of the equation, a tanθ + b secθ = c, then show that (α + β) = \(\frac{2ac}{a^2-c^2}\)

Answer»

Given, α tanθ + b secθ = c    ...(i) 

⇒ (α tanθ − c)2 = b2 (1 + tan2θ) 

⇒ (a2 tan2b2 ) − 2ac tanθ + c2 = b2 + b2 tan2θ 

⇒ (a2 − b2)  tan2θ − 2ac tanθ + c2 − b2 = 0 

Since, α and β are roots of the equation (i), 

we have 

tan α + tan β = \(\frac{2ac}{a^2-b^2}\) and tan α.tan β = \(\frac{c^2-b^2}{a^2-b^2}\) 

Therefore, tan (α + β) = \(\frac{tan\alpha tan\beta}{1-tan\alpha tan\beta}\)

=\(\frac{\frac{2ac}{a^2-b^2}}{1-\frac{c^2-b^2}{a^2-b^2}}\)

=\(\frac{2ac}{a^2-c^2}\)



Discussion

No Comment Found