1.

If α and β are the zeros of the quadratic polynomial p(x) = 4x2 - 5x - 1, find the value of α2β + αβ2

Answer»

α and β are the zeros of the quadratic polynomial p(x) = 4x2 - 5x - 1

Sum of the roots = α + β = \(\frac{constant\,term}{coefficient\,of\,x^2}\) = - \(\frac{(-5)}{4}\)\(\frac{5}{4}\)

Product of the roots = α x β = \(\frac{constant\,term}{coefficient\,of\,x^2}\)\(\frac{(-1)}{4}\)

Now,

α2β + αβ2 =αβ(α + β)

On substituting values from above, we get

\(\frac{-1}{4}\) × \(\frac{5}{4}\) = - \(\frac{5}{16}\)



Discussion

No Comment Found