InterviewSolution
Saved Bookmarks
| 1. |
If `a`, `b` are complex numbers and one of the roots of the equation `x^(2)+ax+b=0` is purely real whereas the other is purely imaginery, and `a^(2)-bara^(2)=kb`, then `k` isA. `2`B. `4`C. `6`D. `8` |
|
Answer» Correct Answer - B `(b)` Let us consider `alpha` as the real and `ibeta` as the imaginergy root. Then `alpha+ibeta=-a` `implies alpha-ibeta=-bara` `implies2alpha=-(a+bara)` and `2ibeta=-(a-bara)` `implies 4ialphabeta=a^(2)-bara^(2)` `implies a^(2)-bara^(2)=4b` |
|