1.

If a, b are real then show that the roots of the equation (a – b)x2 – 6(a + b)x – 9(a – b) = 0 are real and unequal.

Answer»

(a – b)x2 – 6(a + b)x – 9(a – b) = 0 

Here a = a – b; b = – 6(a + b); c = – 9(a – b) 

∆ = b2 – 4ac 

= [- 6(a + b)]2 – 4(a – b)[-9(a – b)] 

= 36(a + b)2 + 36(a – b)(a – b) 

= 36 (a + b)2 + 36 (a – b)2 

= 36 [(a + b)2 + (a – b)2]

The value is always greater than 0 

∆ = 36 [(a + b)2 + (a – b)2] > 0 

∴ The roots are real and unequal.



Discussion

No Comment Found