1.

If a + b + c = 0, then what is the value of \(\frac{a^2+b^2+c^2}{(a-b)^+(b-c)^2+(c-a)^2}\)(a) 1 (b) 3 (c) \(\frac{1}{3}\)(d) 0

Answer»

(c) \(\frac13\)

a + b + c = 0 ⇒ (a + b + c)2 = 0 

⇒ a2 + b2 + c2 + 2ab + 2bc + 2ca = 0 

⇒ a2 + b2 + c2 = – (2ab + 2bc + 2ca)

Now, \(\frac{a^2+b^2+c^2}{(a-b)^+(b-c)^2+(c-a)^2}\)

\(\frac{a^2+b^2+c^2}{a^2+b^2-2ab+b^2+c^2-2bc+c^2+a^2-2ca}\)

\(\frac{a^2+b^2+c^2}{2(a^2+b^2+c^2)-(2ab+2bc+2ca)}\)

\(\frac{a^2+b^2+c^2}{2(a^2+b^2+c^2)-(a^2+b^2+c^2)}\)

\(\frac{a^2+b^2+c^2}{3(a^2+b^2+c^2)}\) = \(\frac13\)



Discussion

No Comment Found