

InterviewSolution
Saved Bookmarks
1. |
If a,b,c, and c, are the roots of `x^(2)-4x+3=0,x^(2)-8x+15=0` and `x^(2)-6x+5=0,` `[{:(a^(2),+c^(2),a^(2)+b^(2)),(b^(2),+c^(2),a^(2)+c^(2)):}]+[{:(2ac,-2ab),(-2bc,-2ac):}]` |
Answer» `therefore" " x^(2)-4x+3=0` `rArr" "(x-1)(x-3)=0 " " therefore x=1,3` `x^(2)-8x+15=0` `rArr " " (x-3)(x-5)=0 " "therefore x=3,5` and `x^(2)-6x+5=0` `rArr" " (x-5)(x-1)=0 " " therefore x=5,1` it is clear that a = 1,3 and c=5 Now, `[(a^(2)+c^(2),a^(2)+b^(2)),(b^(2)+c^(2),a^(2)+c^(2))]+[(2ac,-2ab),(-2bc,-2ac)]` `[(a^(2)+c^(2)+2ac,a^(2)+b^(2)-2ab),(b^(2)+c^(2)-2bc,a^(2)+c^(2)-2ac)]+[(2ac,-2ab),(-2bc,-2ac)]` `[((1+5)^(2),(1-3)^(2)),((3-5)^(2),(1-5)^(2))]=[(36,4),(4,16)]` |
|