1.

If a, b, c are in G.P and x, y are the arithmetic means of a, b and b, c respectively, then \(\frac{1}{x}+\frac{1}{y}\) is equal to(a) \(\frac{b}{2}\) (b) \(\frac{b}{3}\)(c) \(\frac{2}{b}\) (d) \(\frac{3}{b}\)

Answer»

(c) \(\frac{2}{b}\)

a, b, c are in G.P ⇒ b2 = ac                     ...(i)

\(x\) is the A.M. of a, b ⇒ \(x\) = \(\frac{a+b}{2}\)                 ....(ii)

y is the A.M. of b, c ⇒ y = \(\frac{b+c}{2}\)                  ....(iii)

Now \(\frac{1}{x}+\frac{1}{y}\) = \(\frac{2}{a+b}\) + \(\frac{2}{b+c}\) = \(\frac{2(b+c)+2(a+b)}{(a+b)(b+c)}\)

\(\frac{2(a+2b+c)}{ab+b^2+ac+bc}\) = \(\frac{2(a+2b+c)}{ab+b^2+b^2+bc}\) = \(\frac{2(a+2b+c)}{b(a+2b+c)}\) = \(\frac{2}{b}\).



Discussion

No Comment Found