1.

If a, b, c are in G.P, then show that a2 + b2, ab + bc, b2 + c2 are also in G.P.

Answer»

Given that, a, b, c are in G.P

⇒ b2 = ac

⇒ b2 − ac = 0

⇒ (b2 − ac)2 = 0

⇒ b4 + a2c2 − 2b2ac = 0

⇒ a2b2 + b2c2 + 2b2ac = a2b2 + b2c2 + a2c2 + b4

(Adding a2b2 + b2c2 both sides)

⇒ (ab + bc)2 = (a+ b2)(b+ c2)

⇒ a+ b2, ab + bc, b+ c2 are in G.P.

Hence Proved



Discussion

No Comment Found