Saved Bookmarks
| 1. |
If a, b, c are in G.P, then show that a2 + b2, ab + bc, b2 + c2 are also in G.P. |
|
Answer» Given that, a, b, c are in G.P ⇒ b2 = ac ⇒ b2 − ac = 0 ⇒ (b2 − ac)2 = 0 ⇒ b4 + a2c2 − 2b2ac = 0 ⇒ a2b2 + b2c2 + 2b2ac = a2b2 + b2c2 + a2c2 + b4 (Adding a2b2 + b2c2 both sides) ⇒ (ab + bc)2 = (a2 + b2)(b2 + c2) ⇒ a2 + b2, ab + bc, b2 + c2 are in G.P. Hence Proved |
|