InterviewSolution
Saved Bookmarks
| 1. |
If a, b, c are sides of a triangle and a3, b3, c3 are roots of x3−px2+qx−r=0, then match the following list - I with list - II List - IList - II(P)sin3 A+sin3 B+sin3 C−3 sin A sin B sin C=8D31.p=14,q=5, r=8(Q)a sin2 A+b sin2 B+c sin2 C=14D22.p=36,q=7, r=2(R)sin A sin B sin C=2D33.p=9,q=7, r=8(S)a cos2 A+b cos2 B+c cos 2C=2(S−Δ2)4.p=632, q=5, r=275.p=1, q=8, r=8 (here Δ denotes area of triangle and S represents semi perimeter) |
|
Answer» If a, b, c are sides of a triangle and a3, b3, c3 are roots of x3−px2+qx−r=0, then match the following list - I with list - II |
|