1.

If `a ,b, c ,d`are in G.P, then `(b-c)^2+(c-a)^2+(d-b)^2`is equal to`A. `(a-d)^(2)`B. `(ad)^(2)`C. `(a+d)^(2)`D. `(a//d)^(2)`

Answer» Correct Answer - A
Let r be the common ratio of the G.P., a,b,c,d. Then,
`b=ar,c=ar^(2) and d=ar^(3)` ltbrRgt `therefore(b-c)^(2)+(c-a)^(2)+(d-b)^(2)`
`=(ar-ar^(2))^(2)+(ar^(2)-a)^(2)+(ar^(3)-ar)^(2)`
`=a^(r )r^(2)(1-r)^(2)+a^(2)(r^(2)-1)^(2)+a^(2)r^(2)(r^(2)-1)^(2)`
`=a^(2)(r^(6)-2r^(3)+1)`
`=a^(2)(1-r^(3))^(2)`
`=(a-ar^(3))^(2)`
`=(a-d)^(2)`


Discussion

No Comment Found