InterviewSolution
Saved Bookmarks
| 1. |
If `a,b,c,d` be four distinct positive quantities in AP, then (a) `bcgtad` (b) ` c^(-1)d^(-1)+a^(-1)b^(-1)gt2(b^(-1)d^(-1)+a^(-1)c^(-1)-a^(-1)d^(-1))` |
|
Answer» `therefore a,b,c,d` are in AP. (a) Applying AMgtGM For first three members, `bgtsqrt(ac)` `implies b^(2)gt ac " " "….(i)"` and for last three members, `cgtsqrt(bd)` `implies c^(2)gt bd " " "……(ii)"` From Eqs. (i) and (ii), we get `b^(2)c^(2)gt(ac)(bd)` Hence, `bcgtad` (b) Applying AMgtHM For first three members, `bgt(2ac)/(a+c)` `implies ab+bcgt2ac " " ".....(iii)"` For last three members, `cgt(2bd)/(b+d)` `bc+cdgt2bd " " "...(iv)"` From Eqs. (iii) and (iv), we get `ab+bc+bc+cdgt2ac+2bd` or `ab+cdgt2(ac+bd-bc)` Dividing in each term by `abcd`, we get ` c^(-1)d^(-1)+a^(-1)b^(-1)gt2(b^(-1)d^(-1)+a^(-1)c^(-1)-a^(-1)d^(-1))` |
|