1.

If `a ,b ,c ,da n dp`are distinct real numbers such that `(a^2+b^2+c^2)p^2-2(a b+b c+c d)p+(b^2+c^2+d^2)lt=0,`then prove that `a ,b ,c , d`are in G.P.A. are in APB. are in GPC. are in HPD. satisfy `ab = cd`

Answer» Correct Answer - B
Here, `(a^(2) + b^(2) + c^(2)) p^(2) -2 (ab + bc + cd) p + (b^(2) + c^(2) + d^(2)) le 0`
`rArr (a^(2) p^(2) - 2abp + b^(2)) + (b^(2) p^(2) -2bcp + c^(2)) + (c^(2) p^(2) -2cdp + d^(2)) le 0`
`rArr (ap - b)^(2) + (bp -c)^(2) + (cp -d)^(2) le 0`
[since, sum of squares is never less than zero]
Since, each of the squares is zero.
`:. (ap = b)^(2) = (bp -c)^(2) + (cp -d)^(2) = 0`
`rArr p = (b)/(a) = (c)/(b) = (d)/(c)`
`:.` a, b, c, d are in GP.


Discussion

No Comment Found

Related InterviewSolutions