1.

If A =\( \begin{bmatrix} 1 & 0 & 0 \\[0.3em] 2 & 1 & 0 \\[0.3em] 3 &3 &1 \end{bmatrix}\)then reduce it to I3 by using column transformations.[1,0,0,2,1,0,3,3,1]

Answer»

Given,

[1,0,0,2,1,0,3,3,1]

|A| =\( \begin{vmatrix}1 & 0 & 0 \\[0.3em]2 & 1 & 0 \\[0.3em]3 &3 &1\end{vmatrix}\)

= 1(1 – 0) – 0 + 0 = 1 ≠ 0

∴ A is a non-singular matrix. 

Hence,

The required transformation is possible.

Now,

A = \( \begin{bmatrix}1 & 0 & 0 \\[0.3em]2 & 1 & 0 \\[0.3em]3 &3 &1\end{bmatrix}\)

By C1 – 2C2, we get,

A ~\( \begin{bmatrix}1 & 0 & 0 \\[0.3em]0 & 1 & 0 \\[0.3em]-3 &3 &1\end{bmatrix}\)

By C1 + 3C3 and C2 – 3C3, we get,

A ~\( \begin{bmatrix}1 & 0 & 0 \\[0.3em]0 & 1 & 0 \\[0.3em]0 &0 &1\end{bmatrix}\) = I3.



Discussion

No Comment Found

Related InterviewSolutions