1.

If A=[{:(cos alpha,sin alpha),(-sin alpha, cos alpha):}] and A^(-1)=A' then find the value of alpha.

Answer»

SOLUTION :We have,
`A=[{:(cos a,sina),(-SIN a,cosa):}]` and `A'=[{:(cos a,-sina),(sina,cosa):}]`
Also, `A^(-1)=A`'
`rArr A A^(-1)=A A`'
`rArr I=[{:(cos alpha,sin alpha),(-sin alpha,cos alpha):}]`
`rArr [{:(1,0),(0,1):}]=[{:(cos^(2)alpha+sin^(2)alpha, 0),(0,sin^(2)alpha+cos^(2)alpha):}]`
By using EQUALITY of matrices, we get
`cos^(2)alpha+sin^(2)alpha=1`
which is true for all REAL values of `alpha`.


Discussion

No Comment Found

Related InterviewSolutions