InterviewSolution
Saved Bookmarks
| 1. |
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, then show that a2 + b2 = m2 + n2. |
|
Answer» Given, a cos θ + b sin θ = m …(1) a sin θ – b cos θ = n …(2) Squaring and adding equation 1 and 2, we get – (a cos θ + b sin θ)2 + (a sin θ – b cos θ)2 = m2 + n2 ⇒ a2cos2θ + b2sin2θ + 2ab sin θ cos θ + a2sin2θ + b2cos2θ - 2ab sin θ cos θ = m2 + n2 ⇒ a2cos2θ + b2sin2θ + a2sin2θ + b2cos2θ = m2 + n2 ⇒ a2(sin2θ + cos2θ) + b2(sin2θ + cos2θ) = m2 + n2 Using: sin2θ + cos2θ = 1, we get – ⇒ a2 + b2 = m2 + n2 |
|