1.

If a cosθ + b sinθ = m and a sinθ – b cosθ = n, prove that : (m2 + n2 ) = (a2 + b2).

Answer»

Given that a cosθ + bsinθ = m. … (1) 

And a sinθ – b cosθ = n. … (2) 

Now, squaring equation (2) and (3), we get 

m2 = (a cosθ + sinθ)2 

= a2 co2θ + b2 sin2θ + 2absinθcosθ. … (3) 

And n2 = (a sinθ − b cosθ)2 = a2 sin2 + b2 cos2 – 2absinθcosθ. … (4) 

Now, adding equations (3) & (4), we get 

m2 + n2 = a2 (cos2θ + sin2θ) + b2 (sin2θ + cos2θ) + 2ab sinθcosθ – 2ab sinθcosθ 

⇒ m2+ n2 = a2 + b2 . (∵ sin2θ + cos2θ = 1) 

Hence Proved.



Discussion

No Comment Found

Related InterviewSolutions