1.

If a = costheta + i sin theta, b = cos 2theta - i sin 2theta, c = cos 3theta + i sin3thetaandif |{:(a,,b,,c),(b,,c,,a),(c,,a,,b):}| = 0then

Answer»

`theta=2 k pi, k in Z`
` theta= (2k +1)pi, k in Z`
`theta= (4k +1) pi,k in Z`
none of these

SOLUTION :`Delta =|{:(a,,b,,C),(b,,c,,a),(c,,a,,b):}|`
`=-(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)`
`=(1)/(2) (a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)]=0`
`rArr a+b+c=0"or" a=b=c `
`" if" a+b+c =0 , ` we have
`costheta + cos 2theta + cos 3theta =0`
and `sintheta-sin 2theta + sin 3theta = 0`
or`cos 2 theta (2 cos theta + 1)=0`
and`sin 2 theta (1 -2 cos theta ) =0 .............(1)`
which is notpossibleas `cos 2 theta = 0`given`sin 2 theta ne 0, cos theta ne 1/2`
and`cos theta = 1/2` gives `sin 2 theta ne 0, cos thetane 1/2` .
Therefore , Eq. `(1)` does nothold SIMULTANEOUSLY .Therefore ,
`a+b+c ne 0`
`rArr a=b=c`
`:. e^(itheta)=e^(-2itheta) =e^(3itheta)`
whichis satisfied only byby `e^(i theta) =1`, i.e., `cos theta =1, sin theta =0`
so `theta = 2k pi , k in Z`


Discussion

No Comment Found

Related InterviewSolutions