InterviewSolution
Saved Bookmarks
| 1. |
`If A=[[costheta,sintheta],[-sintheta,costheta]],then Lim_(x_>oo)1/nA^n` is |
|
Answer» Correct Answer - Zero Matrix `A=[(cos theta,sin theta),(-sin theta,cos theta)]` `A^(2)=[(cos theta,sin theta),(-sin theta,cos theta)][(cos theta,sin theta),(-sin theta,cos theta)]` `=[(cos^(2) theta-sin^(2) theta,2 sin theta cos theta),(-2 sin theta cos theta,cos^(2) theta - sin^(2) theta)]` `=[(cos 2 theta,sin 2 theta),(-sin 2 theta,cos 2 theta)]` `A^(3)=A^(2) A=[(cos 2 theta,sin 2 theta),(-sin 2 theta,cos 2 theta)][(cos theta,sin theta),(-sin theta,cos theta)]` `=[(cos 3 theta,sin 3 theta),(-sin 3 theta,cos 3 theta)]` Hence, `A^(n)=[(cos n theta,sin n theta),(-sin n theta,cos n theta)]` or `A^(n)/n = [((cos n theta)/n,(sin n theta)/n),((-sin n theta)/n,(cos n theta)/n)]` or `lim_(n rarr oo) A^(n)/n =[(lim_(n rarr oo) (cos n theta)/n,lim_(n rarr oo) (sin n theta)/n),(-lim_(n rarr oo) (sin n theta)/n,lim_(n rarr oo) (cos n theta)/n)]` `=[(0,0),(0,0)]=` Zero matrix |
|