InterviewSolution
Saved Bookmarks
| 1. |
If a = \(\frac{xy}{x+y}\), b = \(\frac{xz}{x+z}\), and c = \(\frac{yz}{y+z}\), where a, b and c are non-zero, then what is x equal to ?(a) \(\frac{2abc}{ac+bc-ab}\)(b) \(\frac{2abc}{ab-ac+bc}\)(c) \(\frac{2abc}{ab+bc+ac}\)(d) \(\frac{2abc}{ab+ac-bc}\) |
|
Answer» (a) \(\frac{2abc}{ac+bc-ab}\) Given, c = \(\frac{yz}{y+z}\) ⇒ cy + cz = yz ⇒ yz - cz = cy ⇒ z (y - c) = cy ⇒ z = \(\frac{cy}{y-c}\) Also b = \(\frac{xz}{x+z}\) ⇒ z = \(\frac{bx}{x-b}\) ∴ \(\frac{cy}{y-c}\) = \(\frac{bx}{x-b}\) ⇒ cyx - cyb = bxy - bxc ⇒ cyx – cyb – bxy = – bxc ⇒ – y(bx + bc – cx) = – bxc ⇒ y = \(\frac{bxc}{bx+bc-cx}\) Now, a = \(\frac{yz}{y+z}\) ⇒ y = \(\frac{ax}{x-a}\) ∴ \(\frac{bxc}{bx+bc-cx}\) = \(\frac{ax}{x-a}\) ⇒ abx2 + abcx – acx2 = bx2c – abcx ⇒ 2abcx = x2 (bc + ac – ab) ⇒ x = \(\frac{2abc}{(ac+bc-ab)}\) |
|