1.

If `a+i b=(c+i)/(c-i)`, where `c`is real, prove that:`a^2+b^2=1a n d b/a=(2c)/(c^2-1)dot`

Answer» `a+ib = (c+i)/(c-i)`
`=>a+ib = (c+i)/(c-i)**(c+i)/(c+i) = (c^2+i^2+2ci)/(c^2-i^2)`
`=>a+ib = (c^2-1+2ci)/(c^2+1)`
`=>a+ib = (c^2-1)/(c^2+1)+i(2c)/(c^2+1)`
Comparing real and imaginary parts,
`:. a = (c^2-1)/(c^2+1) and b = (2c)/(c^2+1)`
(i) `L.H.S. = a^2+b^2 = [(c^2-1)/(c^2+1)]^2+ [(2c)/(c^2+1)]^2`
`=(c^4+1-2c^2+4c^2)/(c^4+1+2c^2)`
`=(c^4+1+2c^2)/(c^4+1+2c^2)`
`=1 = R.H.S.`

(ii) `L.H.S. = b/a = ((2c)/(c^2+1))/((c^2-1)/(c^2+1))`
`=(2c)/(c^2-1) = R.H.S.`


Discussion

No Comment Found

Related InterviewSolutions