InterviewSolution
Saved Bookmarks
| 1. |
If `a_(n+1)=1/(1-a_n)` for `n>=1` and `a_3=a_1`. then find the value of `(a_2001)^2001`. |
|
Answer» Correct Answer - `-1` We have, `a_(n+1)=1/(1-a_(n))` `thereforea_(2)=1/(1-a_(1))` and `a_(3)=1/(1-a_(2))=1/(1-1/(1-a_(1))=(1-a_(1))/(-a_(1))` Since `a_(3)=a_(1),` we have `1-a_(1)/(-a_(1))=a_(1)` `rArra_(1)^(2)-a_(1)+1=0` `rArra_(1)=-omega` or `-omega^(2)`, where `omega` is cube root of unity. Now, `a_(5)=1/(1-a_(4))=1/(1-1/(1-a_(3)))` `=(1-a_(3))/(-a_(3))` `=(1-a_(1))/(-a_(1))=a_(1)=a_(3)` and so on `thereforea_(1)=a_(3)=a_(5)....a_(2001)` Thus, `(a_(2001))^(2001)=(-omega)^(2001)` or `(-omega^(2))^(2001=-1` or `(-1)^(2001)(omega^(3))^(1334)=-1` (`becauseomega^(3)=1`) |
|