1.

If `a_n = n (n!)`, then `sum_(r=1)^100 a_r` is equal toA. 101!B. 100!-1C. 101!-1D. 101!+1

Answer» We have,
`sum_(r=1)^(100)a_(r)=sum_(r=1)^(100)r(r!)=sum_(r=1)^(100){(r+1)!-1}r!`
`impliessum_(r=1)^(100)a_(r)=sum_(r=1)^(100){(r+1)!-r!}`
`impliessum_(r=1)^(100)a_(r)=(2!-1!)+(3!-2!)+(4!-3!)+......+(101!-100!)`
`impliessum_(r=1)^(100)a_(r)=101!-1`


Discussion

No Comment Found

Related InterviewSolutions