1.

If A = R – {3} and B = R – {1} and f : A → B is a mapping defined by f (x) = \(\frac{x-2}{x-3}\) , Show that f is one-one onto.

Answer»

One-One 

Let x, y be any two elements of A, then 

f (x) = f (y) ⇒ \(\frac{x-2}{x-3} = \frac{y-2}{y-3}\) 

⇒ (x – 2) (y – 3) = (y – 2) (x – 3) 

⇒ xy – 2y – 3x + 6 = xy – 2x – 3y + 6 

⇒ – x = – y 

⇒ x = y 

⇒ f is one-one.

Onto 

Let y be an element of B. Then 

f (x) = y 

⇒ y = \(\frac{(x-2)}{(x-3)}\) 

⇒ (x – 3)y = (x – 2) ⇒ xy – 3y = x – 2 

⇒ xy – x = 3y – 2 ⇒ x (y – 1) = 3y – 2 

⇒ x = \(\frac{3y-2}{y-1}\)  

For y ≠ 1, x = \(\frac{3y-2}{y-1}\) is a real number.

Also, A = R – {3} ⇒ \(\frac{3y-2}{y-1}\) ≠ 3,  because if we take \(\frac{3y-2}{y-1}\) = 3, then 3y – 2 = 3y – 3) 

⇒ 2 = 3 which is not true. 

Hence, f is onto. 

⇒ f is both one-one and onto.



Discussion

No Comment Found