1.

If (a2 + b2) x2 + 2 (ac + bd) x + c2 + d2 = 0 has no real roots, then A. ad = bc B. ab = cd C. ac = bd D. ad ≠ bc

Answer»

Since the equation 

(a2 + b2) x2 + 2 (ac + bd) x + c2 + d2 = 0 has no real root 

D < 0 

b2 – 4ac < 0 

b2 < 4ac 

Here a = (a2 + b2), b = 2 (ab + bd), c = c2 + d2 

4(ac + bd)2 – 4 (a2 + b2)(c2 + d2) < 0 

4a2c2 + 4b2d2 + 8abcd – 4(a2c2 + b2c2 + a2d2 + b2d2) < 0 

– 4(a2d2 + b2c2 – 2abcd) < 0 

– 4(ad + bc)2< 0

∴ d is always negative

And ad \(\neq\) bc



Discussion

No Comment Found