1.

If ABC and DEF are similar triangles such that ∠A = 57° and ∠E = 73°, what is the measure of ∠C ?

Answer»

Given 

ABC and DEF are two similar triangles, ∠A = 57° and ∠E = 73° 

We know that SAS similarity criterion states that if one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar. 

In ΔABC and ΔDEF

If \(\frac{AB}{DE}\) = \(\frac{AC}{DF}\) and ∠A = ∠D, then ΔABC ~ ΔDEF

So, 

∠A = ∠D 

⇒ ∠D = 57° … (1) 

Similarly, ∠B = ∠E 

⇒ ∠B = 73° … (2) 

We know that the sum of all angles of a triangle is equal to 180°

⇒ ∠A + ∠B + ∠C = 180° 

⇒ 57° + 73° + ∠C = 180° 

⇒ 130° + ∠C = 180° 

⇒ ∠C = 180° - 130° = 50° 

∴ ∠C = 50°



Discussion

No Comment Found

Related InterviewSolutions