

InterviewSolution
Saved Bookmarks
1. |
If `Ag^(+)+NH_(3)hArr[Ag(NH_(3))]^(+)`, `K_(1)=3.5xx10^(-3)` and `[Ag(NH_(3))]^(+)+NH_(3)hArr[Ag(NH_(3))_(2)]^(+)`, `K_(2)=1.74xx10^(-3)`. The formation constant of `[Ag(NH_(3))_(2)]^(+)` is :A. `6.08xx10^(-6)`B. `6.8xx10^(-6)`C. `1.6xx10^(3)`D. `1.088xx10^(7)` |
Answer» `K_(1)=([Ag(NH_(3))]^(+))/([Ag^(+)][NH_(3)])=3.5xx10^(-3)`...(`i`) `K_(2)=([Ag(NH_(3))_(2)]^(+))/([Ag(NH_(3))]^(+)[NH_(3)])=1.74xx10^(-3)`....(`ii`) `K_(3)=K_(1)xxK_(2)=([Ag(NH_(3))_(2)]^(+))/([Ag^(+)][NH_(3)]^(2))` ....(`iii`) `K_(3)` for `Ag^(+)+2NH_(3)to[Ag(NH_(3))_(2)]^(+)` By eqs. (`i`), (`ii`) and (`iii`), `K_(3)=K_(1)xxK_(2)` `=3.5xx10^(-3)xx1.74xx10^(-3)` `=6.08xx10^(-6)` |
|